A Modal Sequent Calculus for Propositional Separation Logic
نویسنده
چکیده
In this paper, we give a sequent calculus for separation logic. Unlike the logic of bunched implications, this calculus does not have a tree-shaped context – instead, we use labelled deduction to control when hypotheses can and cannot be used. We prove that cut-elimination holds for this calculus, and show that it is sound with respect to the provability semantics of separation logic.
منابع مشابه
A Sequent Calculus for Dynamic Topological Logic
We introduce a sequent calculus for the temporal-over-topological fragment DTL ◦∗/2 0 of dynamic topological logic DTL, prove soundness semantically, and prove completeness syntactically using the axiomatization of DTL ◦∗/2 0 given in [3]. A cut-free sequent calculus for DTL ◦∗/2 0 is obtained as the union of the propositional fragment of Gentzen’s classical sequent calculus, two 2 structural r...
متن کاملOn contraction and the modal fragment
We observe that removing contraction from a standard sequent calculus for first-order predicate logic preserves completeness for the modal fragment.
متن کاملConstructing Cut Free Sequent Systems with Context Restrictions Based on Classical or Intuitionistic Logic
We consider a general format for sequent rules for not necessarily normal modal logics based on classical or intuitionistic propositional logic and provide relatively simple local conditions ensuring cut elimination for such rule sets. The rule format encompasses e.g. rules for the boolean connectives and transitive modal logics such as S4 or its constructive version. We also adapt the method o...
متن کاملGraphical Sequent Calculi for Modal Logics
The syntax of modal graphs is defined in terms of the continuous cut and broken cut following Charles Peirce’s notation in the gamma part of his graphical logic of existential graphs. Graphical calculi for normal modal logics are developed based on a reformulation of the graphical calculus for classical propositional logic. These graphical calculi are of the nature of deep inference. The relati...
متن کاملA Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic
In this paper we present a sequent calculus for propositional dynamic logic built using an enriched version of the tree-hypersequent method and including an infinitary rule for the iteration operator. We prove that this sequent calculus is theoremwise equivalent to the corresponding Hilbert-style system, and that it is contraction-free and cut-free. All results are proved in a purely syntactic ...
متن کامل